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Correction

NEUROSCIENCE
Correction for “Functional connectivity arises from a slow
rhythmic mechanism,” by Jingfeng M. Li, William J. Bentley,
Abraham Z. Snyder, Marcus E. Raichle, and Lawrence H.
Snyder, which appeared in issue 19, May 12, 2015, of Proc Natl Acad
Sci USA (112:E2527–E2535; first published April 27, 2015; 10.1073/
pnas.1419837112).
The authors note that the author list should be updated to

remove Abraham Z. Snyder and Marcus E. Raichle. The cor-
rected author line appears below. The online version has been
corrected.

Jingfeng M. Li (李景峰), William J. Bentley,
and Lawrence H. Snyder
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Functional connectivity arises from a slow
rhythmic mechanism
Jingfeng M. Li (李景峰)a,1,2, William J. Bentleya,1, and Lawrence H. Snydera

Departments of aAnatomy and Neurobiology, bRadiology, and cNeurology, Washington University School of Medicine, St. Louis, MO 63110

Edited by Nancy Kopell, Boston University, Boston, MA, and approved March 31, 2015 (received for review October 17, 2014)

The mechanism underlying temporal correlations among blood
oxygen level-dependent signals is unclear. We used oxygen polar-
ography to better characterize oxygen fluctuations and their cor-
relation and to gain insight into the driving mechanism. The power
spectrum of local oxygen fluctuations is inversely proportional to
frequency raised to a power (1/f) raised to the beta, with an addi-
tional positive band-limited component centered at 0.06 Hz. In con-
trast, the power of the correlated oxygen signal is band limited
from ∼0.01 Hz to 0.4 Hz with a peak at 0.06 Hz. These results
suggest that there is a band-limited mechanism (or mechanisms)
driving interregional oxygen correlation that is distinct from the
mechanism(s) driving local (1/f) oxygen fluctuations. Candidates
for driving interregional oxygen correlation include rhythmic or
pseudo-oscillatory mechanisms.

resting-state functional connectivity | band-limited | criticality | oxygen
polarography | oscillation

Resting-state functional connectivity MRI (rs-fcMRI) analyses
provide insight into the functional architecture of the brain.

The method is based on slow correlations (e.g., 0.01–0.1 Hz) in
blood oxygen level-dependent (BOLD) signal across the brain.
The pattern of these slow correlations has been used to trace out
functional networks and to describe how these networks develop,
change with experience, vary across individuals, and are dis-
turbed in disease (1–8). Slow BOLD fluctuations and their cor-
relations are thought to reflect neuronal processes, yet the
underlying mechanisms remain unknown (9, 10). We used a high
temporal resolution method, oxygen polarography, to charac-
terize the dynamics of oxygen fluctuations and thereby gain in-
sight into the underlying neuronal mechanisms.
Two types of dynamics commonly observed in the brain may

be associated with two distinct types of underlying mechanisms
or processes. Dynamics with narrow band-limited power may
reflect the influence of specific pacemaker units. For instance,
the occipital alpha rhythm, which dominates the EEG during
relaxed wakefulness, may originate from an alpha pacemaker
unit, which consists of a specialized subset of gap-junction–
coupled thalamocortical neurons that exhibit intrinsic rhythmic
bursting at alpha frequencies (11–13). Although much evidence
supports this oscillatory model of resting-state activity (e.g., refs.
14 and 15), the dominant hypothesis in the field is that corre-
lations arise from neural activity propagating within an ana-
tomically constrained small world network (e.g., refs. 16 and 17).
This model predicts scale-free dynamics, also known as 1/f dy-
namics (17, 18). With 1/f dynamics, event amplitude varies in-
versely with frequency, so that large events are rare whereas
small events are common. More precisely, power may vary in-
versely with frequency raised by a (small) exponent: P ∝ 1/fβ, with
typical exponents from 0 to 3 (19). The 1/f dynamics are a hall-
mark of a complex dynamic system operating at a critical point,
at which the system is balanced between ordered and disordered
phases (20–22), although 1/f dynamics may also arise in other
noncritical systems (23). The fact that various neural signals,
such as local field potentials, show 1/f characteristics has inspired
models of the brain as operating at a critical point through a
process of self-organization (17, 24–28).

Local BOLD fluctuations have a 1/f power spectrum (29–31).
This has led to the suggestion that the slow correlations of
resting-state connectivity may reflect a critical process (18, 19).
This assumes that the dynamics of interregional oxygen corre-
lation match the dynamics of local fluctuations. Indeed, three
studies report that BOLD correlations vary inversely with fre-
quency (1/f), much like local oxygen (32–34). However, Sasai
et al. (35), Achard et al. (36), and Cordes et al. (37) report in-
stead that oxygen correlation peaks around 0.04–0.06 Hz, with
less correlation at lower frequencies—a band-limited pattern
that is distinctly different from 1/f (38–40). Finally, other studies
report that BOLD correlations reach a plateau at low frequen-
cies, a result that is intermediate between 1/f and band-limited
dynamics (41, 42).
We used oxygen polarography to directly measure the spec-

trum of interregional oxygen correlation. Polarography is an in-
vasive alternative to BOLD fMRI that allows robust recording of
local oxygen fluctuations with higher temporal resolution, higher
frequency specificity, and broader frequency range than can be
achieved with standard fMRI techniques. We measured oxygen
fluctuations in the default network [bilateral posterior cingulate
cortex (PCC) area 23] and the visual/attention network (bilateral
V3) in the awake, resting macaque. Here, we report that corre-
lations between homotopic regions are band limited rather than
1/f. Further, we show that the variance of local oxygen fluctua-
tions can be separated into a 1/f component and a band-limited
component. Only the band-limited component relates to long-range
correlation. This suggests that there is a band-limited mechanism

Significance

Functional connectivity MRI has revolutionized our under-
standing of brain architecture. Correlated changes in oxygen
levels reveal networks of regions. These networks, each linked
to particular functions, are conserved across individuals and
species. Normal development, learning, and mental disorders
are associated with subtle network changes, providing insight
into how brains work. Remarkably, the basis of functional
connectivity remains unknown. Although some studies have
reported data consistent with an oscillatory process, the lead-
ing hypothesis involves emergent, arrhythmic dynamics of
complex and distributed networks (the “criticality” hypothesis).
By using a new electrode-based technique, we show that
functional connectivity is not related to criticality, but instead
to specific and potentially localizable oscillatory processes. This
finding provides a tool to identify the mechanisms underlying
functional connectivity.
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(or mechanisms) driving interregional oxygen correlation that is
distinct from the mechanism(s) driving local (1/f) oxygen fluctua-
tions. The fact that correlation is band limited is suggestive of a
rhythmic or pseudo-oscillatory mechanism.

Results
Polarography Captures Long-Range Oxygen Correlation. We re-
corded resting-state oxygen level simultaneously from four sites
in two monkeys: two sites in the default mode network (left and
right PCC) and two sites in the visual/attention network (left and
right V3). To verify electrode placement, we first obtained vi-
sually evoked responses at each of these sites. As previously
reported (43), both multiunit firing rate and oxygen level were
elevated in V3, and both were suppressed in PCC (Fig. 1A). This
confirms that our recording sites are located in two functionally
distinct networks: V3 is part of the task-positive, visual/attention
network, whereas PCC is part of the task-negative, default
mode network.
After visual stimulation, we recorded 30–60 min of resting-

state data, where monkeys were left alone and resting in the dark
room. Similar to BOLD recorded with fMRI, oxygen level fluc-
tuated slowly, over the course of tens of seconds or longer,
changing by up to ∼10% of the baseline value (Fig. 1B, Upper)
(44). Unlike BOLD, prominent pulsations (∼1% of the baseline

value) occurred at just above 1 Hz. In separate experiments we
recorded simultaneous electrocardiograms to show that these
pulsations correspond to heart beats (Fig. S1). In conventional
BOLD, these pulsations are aliased into lower frequencies due
to the low sampling rate of fMRI. With our high temporal
resolution, this does not occur. However, modulation of heart
rate by respiration rate and other low-frequency factors will
contaminate measures of interregional oxygen correlation re-
gardless of sampling rate (45). To minimize this contamination,
we analyzed correlations only after regressing out the heart rate
signal (Fig. 1B, Lower). See SI Text for additional discussion
regarding the comparison between oxygen polarography and
BOLD fMRI.
To determine whether long-range correlations in oxygen can

be seen using polarography, we first bandpass filtered the oxygen
signals into the standard fcMRI frequency range (0.1–0.01 Hz).
Fig. 1C shows that polarographic oxygen is correlated across long
distances. Correlations are significantly larger within a network
(in-network correlation, recorded from sites in opposite hemi-
spheres) than correlations across networks (out-of network
correlation) (P < 0.005). Both in-network and out-of-network
correlations are greater than zero (rin = 0.40 ± 0.03, nin = 31, P <
0.0001; rout = 0.28 ± 0.02, nout = 62, P < 0.0001). The positive
out-of-network correlation is surprising, because many fcMRI
studies find that the visual/attention and default mode networks
are anticorrelated with one another; that is, their out-of-network
correlation is negative (44). Such anticorrelation may or may not
be the result of preprocessing steps whose purpose is to remove
common signals (46). In fact, it has been shown that the so-called
“global signal” is in fact particularly prominent in regions in-
cluding visual cortex and pericingulate regions (47). To test
whether the positive out-of-network correlation that we observed
was specific to the particular sites that we used, to their physical
proximity, or to their lying within or close to the occipital lobe,
we performed additional control experiments. We recorded from
two additional pairs of visual/attention and default mode net-
work sites: the intraparietal sulcus (IPS) and PCC and the an-
terior cingulate cortex (ACC) and V3 (Fig. S2). All out-of-
network correlations were significantly positive, even for pairs at
the most extreme distance (ACC vs. V3: rout = 0. 20 ± 0.03, P <
0.001). Distance may affect the strength of out-of-network cor-
relation, although this analysis is confounded by network identity
(Fig. S2). Hemispheric location (within vs. across hemispheres)
did not affect out-of-network correlations (rout [within hemisphere] =
0.29 ± 0.05, rout [across hemisphere] = 0.26 ± 0.03, P = 0.4).
Out-of-network correlations could be driven by artifactual

signals not related to oxygen level. The yellow bar in Fig. 1C
and the yellow dot in Fig. S2 represent the correlation between
noise signals recorded from soft tissue or fluid immediately
adjacent to the brain. This correlation was very low (rnoise =
0.10 ± 0.06, nnoise = 42, P = 0.13), ruling out non-oxygen–related
artifacts (e.g., correlated electrical circuit noise and movement
artifacts) as sources for the high in- and out-of-network corre-
lations. Taken together, our results demonstrate that oxygen
polarography can capture long-range, network-dependent oxy-
gen correlation and serve as an MR-independent measure of
functional connectivity.

Oxygen Correlation Is Band Limited. To gain insight into the
mechanism(s) driving interregional oxygen correlation, we
wished to evaluate the frequency structure of just that portion of
the signals that is correlated between regions. Because we cannot
precisely isolate the correlated signal, we instead estimated
its frequency spectrum by computing correlation as a function
of frequency. To accomplish this, we filtered the heart-rate–
regressed oxygen signals into half-octave frequency bands from
0.003 Hz to 20 Hz and then computed correlation for each band.
Fig. 2A shows that both in- and out-correlations are present only
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Fig. 1. (A) Visually driven activity in V3 and PCC. The visual stimulus is a 1-Hz
flash for 15 s (yellow and black bar). A, Left shows firing rate normalized to
the rate in the 5 s before stimulation and A, Right shows the oxygen mod-
ulation. In V3, both unit activity and oxygen level are activated during visual
stimulation, and in PCC, both are suppressed. (B) Example data (normalized
oxygen level) obtained from three electrodes in a minimally restrained an-
imal at rest in complete darkness. B, Lower shows the same data after
regressing out heart rate. (C) Within each network, oxygen signals (left vs.
right V3, left vs. right PCC) are strongly correlated with one another (“In
network,” r = 0.40 ± 0.03, n = 31 polarographic electrode pairs). Out-of-
network signals (left V3 vs. left PCC, left V3 vs. right PCC, right V3 vs. right
PCC, right V3 vs. left PCC) are also correlated, but less so (r = 0.28 ± 0.02, n =
62 electrode pairs). The correlation between noise signals, recorded from
outside the brain, is 0.10 ± 0.06 (P = 0.13, n = 42). Both in-network and out-
of-network correlations are significantly higher than noise correlation (both
P < 0.005), and the difference between in-network correlation and out-of-
network correlation is significant (P < 0.005).
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in a band-limited window between 0.01 Hz and 0.4 Hz, with a peak
at 0.06 Hz, and not present below 0.01 Hz or between 0.4 Hz and
5 Hz. This frequency structure suggests that the correlated signal is
not 1/f but band limited.
There are several additional features in the data, including a

prominent peak at 1 Hz and a shoulder at 0.3 Hz. Both are
significantly decreased after regressing out heart rate (Fig. S3).
Respiration is known to modulate heart rate and BOLD signals,
and the respiratory rate in monkeys is close to 0.3 Hz (48).
Therefore, the features at 1 Hz and 0.3 Hz likely reflect residual
effects of heart rate and respiration, respectively. A small peak at
10 Hz appears only for in-network correlations and may reflect a
previously undescribed high-frequency, network-specific cou-
pling. The yellow trace in Fig. 2A represents the correlation
found in the soft tissue outside of the brain and demonstrates
that the frequency dependence of correlation is a brain-specific
finding and is not related to extraneous factors such as noise or
filtering in our system.
Correlation captures the instantaneous temporal dependence

between two signals. If there is a time lag between two otherwise
similar signals, then correlation will underestimate that similar-
ity. Consider two otherwise identical sine waves, one of which is
shifted in time by one-quarter cycle. One signal perfectly predicts
the other, and therefore there is 100% temporal dependence
between the two. However, because of the phase shift, their
correlation coefficient is zero. Coherence, unlike correlation,
captures temporal dependence even in the face of phase shifts.
Unlike correlation, the coherence between two sine waves of the
same frequency is always 1, regardless of phase lead or lag. In
general, shifting two signals in time will change their correlation
but will have no effect on their coherence.
Fig. 2B shows that, like correlation, coherence is also band

limited from 0.01 Hz to 0.4 Hz. Other related measures such as
synchrony and wavelet amplitude correlation give similar results
(Fig. S4). The pattern for in-network (PCC–PCC and V3–V3)
recording sites was found in all animals tested, and a very similar
pattern of band-limited correlation was also seen in all out-of-
network pairs, including the out-of-network correlations between
V3 and PCC, IPS and PCC, and V3 and ACC (Fig. S5). We
conclude that interregional oxygen signals show band-limited
temporal dependence, not 1/f.

Local Oxygen Has Both a 1/f Component and a Band-Limited Component.
Previous MRI studies report that the local BOLD power spectrum
is 1/f from 0.01 Hz to 0.23 Hz (29). Our polarography data extend
this finding to a range of 0.003–20 Hz. When plotted on log–log
axes, a 1/fβ relationship appears as a straight line with a slope of β.
Fig. 3A reveals a P ∝ 1/fβ relationship with an exponent of 1.74.

Together, Figs. 2 and 3A show that local power is predominantly
1/f whereas long-range correlation is band limited. This situation
might arise in one of two ways. In one scenario, oxygen fluctua-
tions are driven by at least two distinct mechanisms. One mech-
anism is entirely local and has 1/f characteristics; that is, it has high
power at low frequencies and low power at high frequencies. The
other mechanism independently drives fluctuations that are cor-
related across regions. This mechanism is band limited, with most
of its power concentrated between 0.01 Hz and 0.4 Hz (Fig. 2).
In the second scenario, oxygen fluctuations are driven by

sources that have a 1/f spectrum, and fluctuations that are cou-
pled across regions are a band-limited component of this 1/f
spectrum. (In neither scenario do we include known nonneural
sources of oxygen fluctuations, e.g., heart rate, which is band
limited at around 1 Hz.) The power (or equivalently, the vari-
ance) of two independent processes will add together. Therefore,
we can distinguish between the two scenarios by asking whether
the local power is best described as the sum of a 1/f component
and a band-limited component (supporting the first scenario) or
as purely 1/f (supporting the second scenario).
The data support the first scenario, that is, separate 1/f and

band-limited sources. On closer examination, the local power
spectrum deviates from a strict P ∝ 1/fβ fit, and the largest de-
viation occurs over the same range of frequencies at which long-
range correlations appear (0.01–0.4 Hz). When this frequency
range is excluded, the exponent of the best 1/f fit is 1.65. We call
the difference between the 1/f fit (Fig. 3A, dashed dark red line)
and the observed power (Fig. 3A, solid dark red line) the “de-
viation power” (Fig. 3A, black line). Fig. 3B shows that the de-
viation power has the same frequency profile as the interregional
oxygen correlation. The match is similar for both in-network
correlation (r = 0.89, P < 0.0001) and out-of-network correlation
(r = 0.78, P < 0.0001), although it is stronger in network than out
of network (P = 0.047). This relationship between the 1/f fit and
the observed power is also significant if, instead of using the
mean power averaged across all sessions, the relationship is
computed session by session (r = 0.37 ± 0.04, n = 31, mean ±
SEM, P < 0.05 for in network and r = 0.24 ± 0.04, n = 62, P <
0.05 for out of network). To summarize, local power deviates
from a strict 1/f relationship, and this deviation matches the
frequency profile of long-range oxygen correlation. Because the
power from independent processes will add together, this pattern
can be most parsimoniously explained by the idea that at least
two independent mechanisms drive oxygen fluctuations. One
mechanism is 1/f and local, and the second is band limited and
nonlocal. (We cannot rule out that the two mechanisms may be
partially rather than fully independent.)
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As a further test of the two-source model, we asked whether
the deviation power cofluctuates with interregional oxygen
correlation in time. Briefly, we used a sliding-window strategy
(2-min wide, 10-s increments) to estimate the time courses of
(i) the local deviation power and (ii) the interregional correla-
tion strength. The time courses were estimated over a half-octave
band centered at 0.06 Hz. We chose this frequency band because
this is where we measure the highest deviation power and the
strongest interregional correlation. We then calculated the cor-
relation coefficient between the time course of average deviation
power from each pair of electrodes and the time course of the
long-range correlation coefficient between those same two
electrodes. The fluctuations of local deviation power are signif-
icantly correlated with the fluctuations in long-range correlation,
both for in-network (r = 0.29 ± 0.05, P < 0.05) and out-of-net-
work electrode pairs (r = 0.13 ± 0.04, P < 0.05). The relationship
is significantly stronger in network compared with out of network
(P = 0.03). These results confirm that local deviation power is
significantly related to long-range correlation. The relationship
exists for both in-network pairs and out-of network pairs, but is
stronger for in-network pairs.
As a final test of the two-source model, we evaluated the

impact of removing correlated power on the local power spec-
trum. If the two-source model is accurate, then removing the
power associated with the long-range correlation (the correlated
power) from the locally measured power should make the
remaining power more consistent with the P ∝ 1/fβ spectrum
(Fig. 4A). We estimated the correlated power based on a linear
regression model (Materials and Methods). Removing the cor-
related power significantly improved the fit of the local oxygen
signals to a 1/fβ model. For each individual session and recording
site (n = 93), removing the correlated power either reduces the
maximum deviation from a strict P ∝ 1/fβ spectrum or else leaves
it essentially unchanged; that is, all of the data points fall close to
or below the diagonal identity line (Fig. 4B). In no case did re-
moval of the correlated power substantially increase the de-
viation from a 1/f fit; that is, no points are well above the identity
line. In summary, our data support a two-source model in which
oxygen fluctuations are driven by the sum of long-range band-
limited sources and a local 1/f source. The removal of the cor-
related power from a single distal electrode does not produce a
perfectly linear fit; that is, after removal a positive deviation
often remains in the 0.01- to 0.4-Hz range (e.g., Fig. 4A, Right).
This is consistent with a model in which there are independent

band-limited contributions from multiple long-range networks,
and our manipulation removes only one of those contributions.

Differences in Frequency Content Across Networks. To investigate
whether the frequency content of correlation is similar or dif-
ferent for different networks, we compared correlation and
power deviation across frequencies in the visual/attention net-
work (left V3 and right V3) and in the default mode network
(left PCC and right PCC). Fig. 5 shows that the frequency pro-
files of the visual/attention and default networks are broadly
similar, whether assessed by oxygen correlation (Fig. 5A) or by
power deviation (Fig. 5B). Both networks are band limited from
0.01 Hz to 0.4 Hz.
To compare band-limited correlations in the two networks

more closely, we compared the frequencies at which the peak
effect (correlation or deviation power) occurs, computed electrode
pair by electrode pair. There is no significant difference in
the values obtained using one or the other method (Pvisual/attention =
0.7, Pdefault = 0.6). The peak correlation frequencies (Fig. 5A,
arrows) show a trend toward being higher in the default network
than in the visual/attention network (0.072 ± 0.009 Hz vs. 0.056 ±
0.004 Hz, respectively; P = 0.09). This difference is significant for
the peak deviation power (Fig. 5B, 0.054 ± 0.004 Hz vs. 0.076 ±
0.005 Hz, P < 0.05). In sum, correlation within the two networks
occurs at a similar range of frequencies (0.01–0.4 Hz), but the peak
effect is 0.02 Hz higher in the default network compared with the
visual/attention network. Finally, the fact that the same peak fre-
quencies are seen within each network when using either long-range
correlation or local deviation power further supports the two-
source model.

Eyes Open vs. Eyes Closed. Both local fluctuations and long-range
correlations were stronger when the eyes were closed compared
with open. Effects were similar across areas and networks, with
greater effects in network compared with out of network (SI
Text). The published data from human fMRI are inconsistent on
this point (Table S1). See SI Text for discussion.

Discussion
Interregional correlation of fluctuations in BOLD signals has
been used to reveal the functional architecture of large-scale
brain networks. To gain insight into the origin of BOLD corre-
lation, we used a high temporal-resolution measurement, oxygen
polarography, to further probe oxygen fluctuations and their
correlation. We simultaneously recorded oxygen from two sites
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in the default mode network (bilateral posterior cingulate) and
from two sites in the visual/attention network (bilateral V3) in each
of two resting macaques across multiple experimental sessions.
We found that long-range oxygen correlation occurs only in a

restricted-frequency window of 0.01–0.4 Hz (Fig. 2; see SI Text
for discussion regarding the upper bound). In contrast, the var-
iance or power of local oxygen levels is inversely proportional to
frequency (1/f, or more completely, P ∝1/fβ with β = 1.7) across
the full range of tested frequencies (0.003–20 Hz) (Fig. 3A). This
indicates that the (band-limited) process or processes driving
interregional correlation are distinct from the (1/f) process(es)
driving local oxygen fluctuations. On closer inspection, the power
spectrum of local oxygen fluctuations deviates slightly from a
strict 1/fβ fit. The profile of this deviation closely matches the
frequency profile of the long-range oxygen correlation (Fig. 3B).
This is exactly what would be predicted if the band-limited
mechanism or mechanisms driving interregional oxygen corre-
lation are independent of the mechanism(s) driving the local 1/fβ

fluctuations. Finally, the fact that correlation is band limited
suggests that long-range oxygen correlations are driven by a
rhythmic or pseudo-oscillatory mechanism. The fact that the
peak frequency is higher in one network than in the other (Fig. 5)
is consistent with two separate driving mechanisms, but could
also arise from a single mechanism with slightly different effects
on the two networks (41).

Oxygen Polarography Captures Interregional Oxygen Correlation.
fcMRI has established that blood oxygen levels in widely sepa-
rated brain areas fluctuate in synchrony. This finding was
established by sampling volumes 2–3 mm on a side at 1- to 3-s
intervals. We modified an existing technique, oxygen polar-
ography, to examine long-range oxygen correlations. Oxygen
polarography has been used to study the vascular control of
oxygen levels in the brain and more recently to examine the
relationship between local oxygen levels and neuronal activity
(43, 49–52). Fluctuations in local oxygen level were an incidental
finding in many early polarography studies, but they were be-
lieved to be driven by local autoregulation (e.g., refs. 53 and 54).
Burgess et al. have observed slow fluctuations (∼0.1 Hz) that are
correlated between left and right medial geniculate in rats (55).
However, the importance of interregional oxygen correlation did
not become apparent until fcMRI revealed that long-range
BOLD correlations can be used to delineate functionally rele-
vant brain networks (44, 56).

Polarographic oxygen signals can be recorded using modified
glass pipettes (Clarke electrodes), platinum, or carbon paste
electrodes (49–52). Electrode tip sizes can range from microns to
millimeters. We recorded simultaneously from multiple areas,
using independently controlled platinum microelectrodes with
∼30-μm exposed tips. Our design was optimized for robustness
(required for use in an awake behaving animal), high spatial
specificity, and high temporal resolution. In our design, oxygen
levels are recorded from a sphere of brain parenchyma 30–100 μm
in diameter (vol = 0.00001–0.0005 mm3). We temporally filtered
the analog oxygen signal at 20 Hz before digitizing at 1,000 Hz.
Remarkably, the signals obtained through fMRI and polar-

ography are largely similar, despite differences in sampled volume
and temporal resolution and despite the fact that polarography
samples tissue oxygen rather than blood oxygen. The amplitude
and time course of stimulus-evoked responses in both task-positive
and task-negative areas are similar for the two techniques (43), as
is the finding of interregional correlations (Fig. 1). In our data,
exactly as in fcMRI before global signal regression (see below),
most correlations are positive. Scholvinck et al. (57) have found
electrophysiological evidence for widely shared neural activity at
rest in nonhuman primates, which could correspond to the posi-
tive correlation that we see in the polarographic oxygen signals
between PCC and V3.
A direct comparison between the functional connectivity

revealed by polarography and fcMRI is complicated by differ-
ences in preprocessing. Before computing correlations in fcMRI
data, a mean signal (the global signal) is computed and then
regressed out of each voxel’s data. Some portion of the global
signal is clearly artifactual, including variance due to head
movements, respiration, and aliasing from heart rate. Some
variance is of neural origin. The neurally derived portion of the
global signal could reflect a specific global neural signal, as
shown in Scholvinck et al. (57), or merely an average of neural
activity throughout the brain (46). Global signal regression
(GSR) will distort correlation by imposing a substantial negative
bias, because the sum of the correlations across all of the contrib-
uting signals must necessarily be less than or equal to zero as a
result of GSR (Fig. S6; see ref. 46 for proof). In addition, GSR
might fundamentally alter the correlation pattern by biasing corre-
lations differently in different regions, depending on the true un-
derlying correlation structure (58). Nevertheless, GSR remains in
wide use for fcMRI data, and this is fully justified by the fact that
GSR is effective in removing artifactual variance in fcMRI data and
greatly improves the delineation of networks within the brain (59).
Although GSR is appropriate for fcMRI preprocessing, it

would be inappropriate to apply GSR to our polarographic data.
Artifactual sources are greatly attenuated in polarographic
data compared with MRI data. Sampling rates are higher so
aliasing of heart and respiration rate is not an issue; heart and
respiration rate effects can be resolved and removed from the
data. In addition, we did not observe shared signals in our con-
trol recordings from nonneural tissue (Fig. 1B). This result ar-
gues that our system is not susceptible to correlations resulting
from nonneural sources, including motion artifacts, which are
the major artifactual source in fcMRI data. Thus, applying GSR
to polarography data will not yield empirical benefits in artifact
removal as in fcMRI. If we were to nonetheless blindly apply
GSR in the current study, then the sum of all of our correlations
would necessarily be negative. This would occur whether or not a
shared signal is actually present; it is a mathematical conse-
quence of the operation and independent of the physiology.
With thousands of signals, as in typical fMRI analyses, the sum
of the correlations after regression approaches zero; with fewer
signals the sum is progressively more negative (Fig. S6). Thus,
with our current state of knowledge, applying GSR to our data is
inappropriate for both theoretical and practical reasons. We
cannot rule out the possibility that our results may be affected by
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the inclusion of a globally shared neural signal that is removed
from the fMRI data by GSR. However, our most important
finding—that interregional correlation is band limited—still ap-
plies, because the difference between in-network and out-of-
network correlation is itself strongly band limited (Fig. 2A).

Interregional Oxygen Correlation Is Independent of Local Fluctuations
and Is Band Limited. The temporal and spatial features of in-
terregional oxygen correlation can provide clues to the origin of
the correlation. Local BOLD fluctuations have 1/f power spectra
(Fig. 3A) (29–31). From this it has been suggested that neural
activity corresponding to interregional BOLD correlation may
also have a 1/f power spectrum (19). Furthermore, the topology
of connectivity, as assessed by correlations, itself shows a 1/f
character. Only a few voxels are strongly correlated with many
other voxels outside of their own network (“hub nodes”),
whereas many voxels show a few internetwork correlations (60,
61). Such 1/f features are a signature of a system operating around
criticality, a state where the system balances between ordered and
disordered phases and has a maximum number of metastable
states (62). Taken together, these findings have inspired a heu-
ristic model in which interregional oxygen correlation results
from self-organized criticality (24–28).
A key assumption of the heuristic model is that the spectrum

of interregional correlation is 1/f. Although some studies have
obtained results consistent with a 1/f pattern, other studies report
opposite results. Salvador et al. (33) separate BOLD into three
frequency bands (0–0.08 Hz, 0.08–0.17 Hz, and 0.17–0.25 Hz)
and show that correlation is strongest at the lowest-frequency
band, consistent with a 1/f spectrum. Ciuciu et al. (32) also argue
that BOLD coherence is 1/ f. In contrast, Wu et al. (41) show
that correlation first increases as frequency decreases and then
plateaus at 0.04–0.06 Hz. Achard et al. (36) show that wavelet
correlation, which is similar to coherence, peaks around 0.03–
0.06 Hz and drops at lower frequencies. Sasai et al. (35) measure
mean-squared coherence and find that the prefrontal and oc-
cipital regions show high coherence only in a narrow frequency
range (0.04–0.1 Hz). Network structure is most clear for fMRI at
0.02–0.06 Hz (33, 36, 37). Additional indirect support of band-
limited behavior can be seen in studies of quasi-periodic patterns
in the BOLD signal, which have a center frequency of around
0.05 Hz (63–66). Other indirect support can be found in the fact
that gamma-band power, a putative neural correlate of BOLD
(but see ref. 43), is coherent within the default mode network
only over a narrow frequency range (31). Still other studies find
mixed results regarding the frequency content of BOLD correlation
(37, 42). Thus, some results have been consistent with a 1/f pattern
and others have been consistent with a band-limited pattern.
Two main issues may explain the lack of agreement across

studies. To distinguish band-limited from 1/f effects, a wide range
of frequencies is helpful. Many studies of correlation acquire
only 5–10 min of data, which limits their range at the low-fre-
quency end. Range is limited at the high end by sampling rate. A
typical 5-min fMRI dataset provides a theoretical frequency
range of 1.3 decades (0.17–0.0033 Hz) and a usable range of less
than 1 decade. (The usable range is reduced at the high end
because the Nyquist limit cannot be reached under real-world
conditions and is reduced at the low end because at least three or
four cycles are required for a reproducible estimate.) Second,
most measures of coherence (but not mean-squared coherence,
used by ref. 35) are compromised by a mathematical artifact that
produces an apparent 1/f effect (Fig. S7). This bias is surprisingly
strong, yet few studies remove or otherwise compensate for it
(32, 35). In addition, Zhang et al. (40) show that artifacts, such as
head motion and systemic physiological fluctuations in pulsation,
can mask the frequency structure of the “true” correlation. To
address these issues, we use oxygen polarography, which is less
susceptible to artifactual correlations (Figs. 1B and 2A), and

collect polarographic data for 40 min, providing at least four
cycles of data over four frequency decades (0.0017–20 Hz),
and correct our analysis of coherence for the artifactual 1/f
contamination.
We show that interregional oxygen correlation is band limited

from 0.01 Hz to 0.4 Hz with a peak at 0.06 Hz, not 1/f (Fig. 2). In
addition, we show that the power spectrum of oxygen fluctua-
tions measured at each electrode can be explained as the sum of
a 1/f process plus a band-limited process (Fig. 3A). Both the
frequency profile and the temporal fluctuations of the deviation
power match those of the interregional correlation (Fig. 3B).
This relationship exists for both in-network pairs and out-of-
network pairs, but is stronger for in-network pairs. Our results
indicate that the signal underlying interregional correlation has
a band-limited spectrum that is distinct from the 1/f pattern
of local oxygen fluctuations. The fact that the relationship is
stronger for in-network pairs supports that the deviation power
reflects both network-specific and network-nonspecific correlations
(such as the global signal shown in ref. 57). In-network pairs cap-
ture both network-specific and network-nonspecific correlations,
whereas out-of-network pairs capture only network-nonspecific
correlation, and thus in-network pairs show a stronger relationship
between their correlation and their local deviation power.
Our results do not address whether criticality exists in the

brain. They do, however, strongly suggest that interregional
correlation is neither a result nor a reflection of criticality. More
generally, our results challenge the view that functional con-
nectivity arises from neural activity propagating within an ana-
tomically constrained network (e.g., refs. 16 and 17). This would
predict that correlation has a flat spectrum (Fig. S8). Instead, we
show that oxygen correlation is band limited. The band-limited
aspect of interregional correlation is highly suggestive of rhyth-
mic or pseudo-oscillatory mechanisms, perhaps reflecting reso-
nant mechanisms or circuits (15, 67–69).
Interregional correlations could be driven by oscillatory mod-

ules, perhaps in subcortical nuclei, which consist of small sets of
cells and generate band-limited patterns of firing that are then
transmitted to widespread cortical and subcortical regions. Indeed,
simple oscillator-based models of functional connectivity exist
(e.g., ref. 70). However, these models focus on oscillators with
fast dynamics, on the order of tens to hundreds of milliseconds.
Our results point to oscillators with dynamics several orders of
magnitude slower.
An alternative possibility is that band-limited correlation that

we measure using polarography is unrelated to the functional
connectivity measured using BOLD and instead reflects local
vasomotion or Mayer waves, both of which are low-frequency
(∼0.1 Hz) oscillations in cerebral hemodynamics. For several
reasons, we do not believe this is the case. First, we see greater
correlation within known cortical networks than across networks.
Local vasomotion is a spontaneous oscillation of local blood
vessel tone and is unlikely to drive long-range correlations (53,
71) (but see ref. 63). Mayer waves are produced by oscillations of
arterial pressure and can drive long-range correlations, but these
correlations would not reflect functional network structure (72).
Second, our control recordings from soft tissue should be as sus-
ceptible to local vasomotion and Mayer waves as signals recorded
from the brain (73). However, our control recordings do not show
band-limited correlation. Third, local vasomotion sporadically
occurs in a range of pathological conditions or subjects under
anesthesia but appears to be rare in healthy awake subjects; its
occurrence may reflect a form of hemodynamic dysregulation (71).
In contrast, fcMRI is a consistent phenomenon, seen in essentially
all subjects. We have found band-limited oxygen correlations in all
four awake, resting monkeys that we tested (Fig. S5). The odds of
all four animals showing the same rare vascular behavior are quite
low. Fourth, the characteristic frequency of local vasomotion and
Mayer waves is 0.1 Hz, which is almost an octave above the center
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frequency that we observe. Fifth, local vasomotion and Mayer
waves are sinusoidal, with a large amount of power in a very
narrow frequency range (53, 71, 72). The signals we have recorded
are not sinusoidal but aperiodic (Fig. 1A). In sum, although we
cannot rule out that local vasomotion or Mayer waves contribute
to oxygen correlation, these facts all suggest that the band-limited
correlation that we observe reflects the same phenomenon that is
revealed by resting-state fcMRI in humans and is of neural origin.

Materials and Methods
Animals, Behavior, and Stimulus. Two macaques served as subjects in this
study. Animals were cared for and handled in accordance with the Guide for
the Care and Use of Laboratory Animals, and all procedures were approved
by the Washington University Animal Studies Committee (74). During recording,
macaques were fully hydrated and sat with heads fixed in a dark room. Behavior
was unconstrained, and the animals had no expectation of a task or reward.
Animals naturally relaxed in the setup. The velocity of spontaneous eye move-
ments typically slowed and the eyelids often partially or fully closed (64% and
17% of the time, respectively, for the two monkeys). Results discussed below are
similar for the two monkeys, and thus the data are combined. Data from two
additional macaques were collected for results reported in the SI Text.

Recording. Electrodes were targeted to V3 and PCC, using anatomical MRI
images and physiology (43). Briefly, each animal’s brain was accessed via
bilateral 15-mm (internal diameter) chronic custom recording chambers. T1
weighted MRI images (magnetization prepared rapid acquisition gradient
echo imaging 0.5-mm isotropic voxels) were obtained using a custom
phantom in the chamber that provides visualization of the chamber and
allows for the virtual projection of a chamber-based coordinate system
down into the brain. In one monkey, two small manganese injections were
placed to confirm alignment. Before data collection, boundaries for PCC and
V3 recording regions were defined on the MRI image. The positions of PCC
and V3 were further validated based on their respective oxygen and elec-
trophysiological responses to visual stimulation, which were recorded im-
mediately before the resting-state data (43).

To record oxygen signals, we used specialized platinum microelectrodes [FHC
inventory no. UE(LS3)] as a cathode. An Ag/AgCl reference electrode (Grass
Technologies) was placed on the back of the head at a location with minimal
underlying musculature and no response to body or limb movements. The skin
was lightly abraded to minimize sweat and movement potentials, and a layer of
Ten20 EEG paste was applied. The platinum cathode was polarized at −0.8 V
relative to the reference electrode (Unisense PA2000). The current required to
maintain the polarization is proportional to oxygen level. This signal was filtered
at 20 Hz and sampled and stored at 1 kHz, using the Plexon MAP system.

We recorded oxygen signals simultaneously from left and right PCC and
left and right V3. Twenty datasets (10 from each monkey) with an average
length of 40 min were recorded.

Analysis. All analyses were performed with custom software written in Matlab
(MathWorks). Oxygen polarographic signals, like BOLD signals, reflect relative
rather than absolute oxygen levels. Therefore, the polarographic signals, like
BOLDdata,were expressed as percentageof deviation from themean signal level.
Heart-rate removal. We identified individual heart rate pulsations, using a
recursive template-matching approach. We started with a 1-s Gaussian-
derived generic heartbeat template. We identified putative beat times as the
moments at which the template had greatest linear correlationwith the data,
using a sliding-window approach (1-s window with increment of 1 ms). We
used these times to generate a beat-triggered average of the oxygen signal.
We then replaced the heartbeat template with this beat-triggered average
and repeated the analysis. Four iterations were performed to refine our
estimates of the beat template and the beat times. The estimated heartbeat
effect was then regressed out of the oxygen signals, taking into account
instantaneous heart rate, using the method of Fekete et al. (75).
Bandpass filtering. Bandpass filtering was accomplished by first high-pass filtering
and then low-pass filtering. Chebyshev-type II filtersweredesignedwithadefined
passband and stopband. The transition band of each filter was one octave wide,
and the stopband was set to −80 dB. For the correlation in Fig. 1B, the −3-dB
points for the low- and high-pass filters were set to 0.01 Hz and 0.1 Hz, re-
spectively. For correlation in Fig. 2A, oxygen signals were filtered into individual
frequency bands, using filters with half-octave passbands.
Correlation and coherence. Correlation was calculated as Pearson’s r. To cal-
culate coherence, we decomposed each oxygen signal into a time-frequency
representation. We extracted the instantaneous amplitude A(t, f) and ana-
lytical phase ψ(t, f) as a function of time and frequency by applying the

Hilbert transform to each half-octave band. To confirm that our results were
not influenced by the specific filters used or by the use of the Hilbert
transform, we repeated the decomposition and subsequent analyses, using a
continuous wavelet transform with a complex Morlet wavelet (43). These
two approaches generated nearly identical results.

Coherence at the frequency (f) is defined as

Coherencex,yðfÞ=
E
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where E is the expectation or mean value across time (t). Coherence measures
the degree of consistency of the phase difference Φx,y(t, f) = ψx(t, f) − ψy(t, f)
across time. It ranges over the interval 0–1. The more consistent the phase
difference is across time, the higher the coherence value. All statistics on corre-
lation and coherence were done after applying Fisher’s Z transform (76).

Estimations of instantaneous phase at neighboring time points by a Hilbert or
wavelet transform are based on a finite interval. This results in the phase of
neighboring time points being nearly identical, because they are estimated based
on overlapping data. Even phase estimates of time points that are more widely
separated will show some level of artifactual consistency. This artifactual con-
sistency in phase within individual signals produces artifactual consistency in the
phase differences across signals. This in turn leads to artifactual nonzero values
for coherence even for completely independent signals. Fig. S7 shows the bias
between two 8-min independent synthetic signal streams. The bias approaches 1
for a single cycle of data. This reflects the fact that, with a single cycle of data,
phase can hardly vary as a function of time, and therefore the phase difference
between two independent streams remains nearly constant for the entire cycle,
and coherence thus approaches 1. As the number of data cycles in each stream
increases, the bias decreases, but even with 1,000 cycles of data (corresponding
to a frequency of just over 1 Hz for an 8-min data stream) the bias is still sig-
nificantly greater than zero. The result is that, for most data lengths, there will
be a substantial bias toward a 1/f characteristic.

To estimate and remove the bias, we constructed two independent syn-
thetic signals, each with the same duration and power spectrum as the
recorded oxygen signals. We then calculated their coherence. This process
was repeated 100 times and the resultant values were averaged to compute
the mean expected bias. For the analysis illustrated in Fig. 2B, the mean
expected bias was subtracted out so that a value of zero corresponds to the
consistency of phase differences that would be obtained by chance were the
null hypothesis true (no coherence).
Power spectrum and deviation power. The power spectrumwas obtained using the
multitaper technique (77, 78), which efficiently improves spectral estimates by
using multiple Slepian tapers. When power and frequency are expressed in log
units, the 1/f power spectrum is captured by a linear function,

logðPowerÞ=−β × logðfÞ+   k,

where f is frequency, β is the power exponent, and k is the offset. The de-
viation power (Fig. 3) was calculated as the difference between the actual
power and the power predicted by a linear fit.
Removal of correlated power. We wished to estimate power in a signal after re-
moving the power that is associated with a correlated signal. Consider two
signals, expressed as vectors X

*
and Y

*
, whose correlation coefficient is r. Both X

*
and

Y
*
can be written as the sum of a shared component plus a unique component,

X
*
=
�
S
*
×WSx +Ux

*
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−W2

Sx

q �
×

���X*
���, [1]

Y
*
=
�
S
*
×WSy + Uy

*
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−W2

Sy

q �
×

���Y*
���, [2]

where S
*
, Ux
*

, and Uy
*

are unit-length vectors corresponding respectively to
the shared component, the unique component in X

*
, and the unique com-

ponent in Y
*
. S
*
and Ux

*
, S
*
and Uy

*
, and Ux

*
and Uy

*
are all orthogonal to each

other. WSx and WSy are the relative weights of the shared component (S
*
) in

X
*
and Y

*
, respectively. If the fraction of the total signal that is shared is similar

in X
*
and Y

*
, then WSx =WSy =WS, and based on [1] and [2] the shared power

and the unique power are expressed as

Shared  Power=Total  Power×
�
W2

S

	
, [3]

Unique  Power= Total  Power×
�
1−W2

S

	
. [4]

The correlation between X
*
and Y

*
is by definition
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r =
X
*
·Y
*


���X*���×
���Y*

���
�. [5]

We can substitute the values from Eqs. 1 and 2 into Eq. 5. Because S
*
, Ux
*

, and
Uy
*

are all orthogonal to each other, most of the terms in the dot product go
to zero, leaving

r =



S
*
×WSx ×

���X*
���
�
·


S
*
×WSy ×

���Y*
���
�


���X*���×
���Y*

���
� =WSx ×WSy =W2

S . [6]

Therefore, from Eqs. 3, 4, and 6,

Shared  Power= Total  Power× r,

Unique  Power= Total  Power× ð1− rÞ.

Thus, theuniquepower in a signal that is left over after removing thepower
that is associated with a correlated signal is simply, for each frequency band,
1 minus the Pearson correlation coefficient, multiplied by the total power.
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